Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(11): 13112-13124, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524448

RESUMO

The utilization of coconut diethanolamide (p-CDEA) as a substitute polyol for petroleum-based polyol in fully biobased rigid polyurethane-urea foam (RPUAF) faces challenges due to its short chain and limited cross-linking capability. This leads to compromised cell wall resistance during foam expansion, resulting in significant ruptured cells and adverse effects on mechanical and thermal properties. To address this, a novel sequential amidation-prepolymerization route was employed on coconut oil, yielding a hydroxyl-terminated poly(urethane-urea) prepolymer polyol (COPUAP). Compared to p-CDEA, COPUAP exhibited a decreased hydroxyl value (496.3-473.2 mg KOH/g), an increase in amine value (13.464-24.561 mg KOH/g), and an increase in viscosity (472.4-755.8 mPa·s), indicating enhanced functionality of 34.3 mgKOH/g and chain lengthening. Further, COPUAP was utilized as the sole B-side polyol in the production of RPUAF (PU-COPUAP). The improved functionality of COPUAP and its improved cross-linking capability during foaming have significantly improved cell morphology, resulting in a remarkable 4.7-fold increase in compressive strength (132-628 kPa), a 3.5-fold increase in flexural strength (232-828 kPa), and improved insulation properties with a notable decrease in thermal conductivity (48.02-34.52 mW/m·K) compared to PU-CDEA in the literature. Additionally, PU-COPUAP exhibited a 16.5% increase in the water contact angle (114.93° to 133.87°), attributing to the formation of hydrophobic biuret segments and a tightly packed, highly cross-linked structure inhibiting water penetration. This innovative approach sets a new benchmark for fully biobased rigid foam production, delivering high load-bearing capacity, exceptional insulation, and significantly improved hydrophobicity.

2.
Environ Monit Assess ; 195(12): 1486, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973642

RESUMO

In recent years, many countries have relied on the massive use of personal protective equipment (PPE) following the recommendation of the World Health Organization (WHO) to combat COVID-19, an infectious disease caused by the SARS-CoV-2 virus. These PPEs include facemasks, face shields, disinfectant wipes, and disposable gloves. While PPE serves as protection, it can also be a source of pollution. This study is the first to establish a baseline monitoring and assessment of the spatial distribution of COVID-19-related PPE litter approaching the post-pandemic from the urban areas in Iligan City, Philippines. A total of 1632 COVID-19 PPE litter were gathered in all surveyed locations, predominantly facemasks (90.7%) and disinfectant wipes (8.8%). Among the surveyed areas, the location that recorded the highest count and density of PPE litter is in a residential zone (52.14%; n = 851; 0.0317 item m-2); the lowest was determined in recreational parks (2.57%; n = 42; 0.0016 item m-2). The significant difference in the total count of PPE items in each location could be traced to the varying land uses and ecosystems as well as the human behavior and activities. FTIR results reveal that all types of facemasks sampled are principally made of polypropylene, a material that threatens environmental sustainability and low recyclability. As the country is embracing the new normal and somewhat returning to pre-pandemic activities, this study calls for the prioritization of the government agendas on ecological solid waste management in the country.


Assuntos
COVID-19 , Desinfetantes , Humanos , Filipinas , Ecossistema , Monitoramento Ambiental , COVID-19/epidemiologia , COVID-19/prevenção & controle , Equipamento de Proteção Individual
3.
Environ Sci Pollut Res Int ; 30(11): 29824-29833, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36418829

RESUMO

The pollution of aquatic systems by microplastics is a well-known environmental problem. However, limited studies have been conducted in freshwater systems, especially in the Philippines. Here, we determined for the first time the amount of microplastics in the Philippines' largest freshwater lake, the Laguna de Bay. Ten (10) sampling stations on the lake's surface water were sampled using a plankton net. Samples were extracted and analyzed using Fourier-transform infrared spectroscopy (FTIR). A total of 100 microplastics were identified from 10 sites with a mean density of 14.29 items/m3. Most microplastics were fibers (57%), while blue-colored microplastics predominated in the sampling areas (53%). There were 11 microplastic polymers identified, predominantly polypropylene (PP), ethylene vinyl acetate copolymer (EVA), and polyethylene terephthalate (PET), which together account for 65% of the total microplastics in the areas. The results show that there is a higher microplastic density in areas with high relative population density, which necessitates implementing proper plastic waste management measures in the communities operating on the lake and in its vicinity to protect the lake's ecosystem services. Furthermore, future research should also focus on the environmental risks posed by these microplastics, especially on the fisheries and aquatic resources.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Lagos/química , Água , Baías , Ecossistema , Filipinas , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
4.
World J Microbiol Biotechnol ; 37(7): 122, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34151386

RESUMO

The contamination of the environment by crude oil and its by-products, mainly composed of aliphatic and aromatic hydrocarbons, is a widespread problem. Biodegradation by bacteria is one of the processes responsible for the removal of these pollutants. This study was conducted to determine the abilities of Burkholderia sp. B5, Cupriavidus sp. B1, Pseudomonas sp. T1, and another Cupriavidus sp. X5 to degrade binary mixtures of octane (representing aliphatic hydrocarbons) with benzene, toluene, ethylbenzene, or xylene (BTEX as aromatic hydrocarbons) at a final concentration of 100 ppm under aerobic conditions. These strains were isolated from an enriched bacterial consortium (Yabase or Y consortium) that prefer to degrade aromatic hydrocarbon over aliphatic hydrocarbons. We found that B5 degraded all BTEX compounds more rapidly than octane. In contrast, B1, T1 and X5 utilized more of octane over BTX compounds. B5 also preferred to use benzene over octane with varying concentrations of up to 200 mg/l. B5 possesses alkane hydroxylase (alkB) and catechol 2,3-dioxygenase (C23D) genes, which are responsible for the degradation of alkanes and aromatic hydrocarbons, respectively. This study strongly supports our notion that Burkholderia played a key role in the preferential degradation of aromatic hydrocarbons over aliphatic hydrocarbons in the previously characterized Y consortium. The preferential degradation of more toxic aromatic hydrocarbons over aliphatics is crucial in risk-based bioremediation.


Assuntos
Burkholderia/metabolismo , Cupriavidus/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Octanos/metabolismo , Pseudomonas/metabolismo , Técnicas de Tipagem Bacteriana , Benzeno/metabolismo , Derivados de Benzeno/metabolismo , Biodegradação Ambiental , Burkholderia/classificação , Burkholderia/genética , Catecol 2,3-Dioxigenase/genética , Cupriavidus/classificação , Cupriavidus/genética , Citocromo P-450 CYP4A/genética , DNA Bacteriano , Microbiologia Ambiental , Poluentes Ambientais/metabolismo , Campos de Petróleo e Gás/microbiologia , Petróleo/microbiologia , Pseudomonas/classificação , Pseudomonas/genética , RNA Ribossômico 16S , Tolueno/metabolismo , Xilenos/metabolismo
5.
Mar Pollut Bull ; 162: 111867, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33276157

RESUMO

During oil spills in the field or for laboratory incubation studies, different oil concentrations are often encountered or applied, yet how initial oil concentration affects biodegradation rates of hydrocarbons and the development of oil degraders remains unclear. We incubated seawater for 50 d with different oil concentrations (0, 50, 100, 200, 400 and 800 ppm). n-Alkanes and polycyclic aromatic hydrocarbons (PAHs), and the bacterial community were analyzed periodically. Results show that the biodegradation rates of alkanes, derived from first order kinetics, decreased with increasing oil concentration, but percent residual was ~50% regardless of the initial concentration. In contrast, the biodegradation rates of PAHs increased with concentration, and the percent residual increased with oil concentration. Increasing oil concentration resulted in increased abundances of Rhodobacterales, Altererythrobacter, and Neptuniibacter. However, Alcanivorax abundance was barely detected in 400 and 800 ppm. Overall, oil concentration critically affected the degradation of hydrocarbons and the bacterial community.


Assuntos
Poluição por Petróleo , Petróleo , Biodegradação Ambiental , Hidrocarbonetos , RNA Ribossômico 16S , Água do Mar
6.
Environ Sci Pollut Res Int ; 27(28): 34987-34999, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32588304

RESUMO

Hurricane Harvey was the wettest hurricane in US history bringing record rainfall and widespread flooding in Houston, TX. The resulting storm- and floodwaters largely emptied into the Galveston Bay. Surface water was collected from 10 stations during five cruises to investigate the concentrations and sources of 16 priority polycyclic aromatic hydrocarbons (PAHs), and relative abundances of PAH-degrading bacteria. Highest PAH levels (102-167 ng/L) were detected during the first sampling event, decreasing to 36-69 ng/L within a week. Four sites had elevated concentrations of carcinogenic benzo[a]pyrene that exceeded the Texas Standard for Surface Water threshold. The highest relative abundances of known PAH-degrading bacteria Burkholderiaceae, Comamonadaceae, and Sphingomonadales were detected during the first and second sampling events. PAH origins were about 60% pyrogenic, 2% petrogenic, and the remainder of mixed sources. This study improves our understanding on the fate, source, and distributions of PAHs in Galveston Bay after an extreme flooding event.


Assuntos
Tempestades Ciclônicas , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Bactérias , Baías , Monitoramento Ambiental , Sedimentos Geológicos , Texas
7.
Harmful Algae ; 95: 101802, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32439059

RESUMO

The association between phytoplankton blooms and oil spills is still controversial despite numerous studies. Surprisingly, to date, there have been no studies on the effect of bacterial communities (BCs) exposed to crude oil on phytoplankton growth, even though crude oil changes BCs, which can then affect phytoplankton growth and species composition. Co-culture with crude oil-exposed BCs significantly stimulated the growth of Prorocentrum texanum in the laboratory. To gain more direct evidence, oil-degrading bacteria from oil-contaminated sediment collected after the Texas City "Y" oil spill were isolated, and changes in dinoflagellate growth when co-cultured with single bacterial isolates was investigated. The oil-degrading bacterial isolates significantly stimulated the growth of dinoflagellates (axenic and xenic cultures) through releasing growth-promoting substances. This study provides new evidence for the potential role of oil-degrading bacteria in the formation of phytoplankton blooms after an oil spill.


Assuntos
Dinoflagellida , Poluição por Petróleo , Petróleo , Bactérias , Fitoplâncton
8.
PLoS One ; 13(12): e0208406, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30521589

RESUMO

Sinking marine oil snow was found to be a major mechanism in the transport of spilled oil from the surface to the deep sea following the Deepwater Horizon (DwH) oil spill. Marine snow formation is primarily facilitated by extracellular polymeric substances (EPS), which are mainly composed of proteins and carbohydrates secreted by microorganisms. While numerous bacteria have been identified to degrade oil, there is a paucity of knowledge on bacteria that produce EPS in response to oil and Corexit exposure in the northern Gulf of Mexico (nGoM). In this study, we isolated bacteria from surface water of the nGoM that grow on oil or Corexit dispersant. Among the 100 strains isolated, nine were identified to produce remarkable amounts of EPS. 16S rRNA gene analysis revealed that six isolates (strains C1, C5, W10, W11, W14, W20) belong to the genus Alteromonas; the others were related to Thalassospira (C8), Aestuariibacter (C12), and Escherichia (W13a). The isolates preferably degraded alkanes (17-77%), over polycyclic aromatic hydrocarbons (0.90-23%). The EPS production was determined in the presence of a water accommodated fraction (WAF) of oil, a chemical enhanced WAF (CEWAF), Corexit, and control. The highest production of visible aggregates was found in Corexit followed by CEWAF, WAF, and control; indicating that Corexit generally enhanced EPS production. The addition of WAF and Corexit did not affect the carbohydrate content, but significantly increased the protein content of the EPS. On the average, WAF and CEWAF treatments had nine to ten times more proteins, and Corexit had five times higher than the control. Our results reveal that Alteromonas and Thalassospira, among the commonly reported bacteria following the DwH spill, produce protein rich EPS that could have crucial roles in oil degradation and marine snow formation. This study highlights the link between EPS production and bacterial oil-degrading capacity that should not be overlooked during spilled oil clearance.


Assuntos
Bactérias/classificação , Matriz Extracelular de Substâncias Poliméricas/microbiologia , Sedimentos Geológicos/microbiologia , Poluição por Petróleo/análise , Alteromonas/classificação , Alteromonas/isolamento & purificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Carboidratos/análise , DNA Bacteriano/genética , DNA Ribossômico/genética , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Golfo do México , Filogenia , RNA Ribossômico 16S/genética , Rhodospirillaceae/classificação , Rhodospirillaceae/isolamento & purificação
9.
ISME J ; 12(10): 2532-2543, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29950702

RESUMO

The Deepwater Horizon (DWH) blowout resulted in the deposition to the seafloor of up to 4.9% of 200 million gallons of oil released into the Gulf of Mexico. The petroleum hydrocarbon concentrations near the wellhead were high immediately after the spill, but returned to background levels a few years after the spill. Microbial communities in the seafloor are thought to be responsible for the degradation of hydrocarbons, however, our knowledge is primarily based upon gene diversity surveys and hydrocarbon concentration in field sediment samples. Here, we investigated the oil degradation potential and changes in bacterial community by amending seafloor sediment collected near the DWH site with crude oil and both oil and Corexit dispersant. Polycyclic aromatic hydrocarbons were rapidly degraded during the first 30 days of incubation, while alkanes were degraded more slowly. With the degradation of hydrocarbons, the relative abundances of Colwelliaceae, Alteromonadaceae, Methylococales, Alcanivorax, Bacteriovorax, and Phaeobacter increased remarkably. However, the abundances of oil-degrading bacteria changed with oil chemistry. Colwelliaceae decreased with increasing oil degradation, whereas Alcanivorax and Methylococcales increased considerably. We assembled seven genomes from the metagenome, including ones belonging to Colwellia, Alteromonadaceae, Rhodobacteraceae, the newly reported genus Woeseia, and candidate phylum NC10, all of which possess a repertoire of genes for hydrocarbon degradation. Moreover, genes related to hydrocarbon degradation were highly enriched in the oiled treatment, suggesting that the hydrocarbons were biodegraded, and that the indigenous microflora have a remarkable potential for the natural attenuation of spilled oil in the deep-sea surface sediment.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Poluição por Petróleo/análise , Petróleo/metabolismo , Proteobactérias/classificação , Poluentes Químicos da Água/metabolismo , Golfo do México , Louisiana , Proteobactérias/metabolismo , Poluentes Químicos da Água/análise
10.
Ecotoxicology ; 27(5): 505-516, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29556940

RESUMO

Field data from the first several days after an oil spill is rare but crucial for our understanding of a spill's impact on marine microbiota given their short generation times. Field data collected within days of the Texas City "Y" oil spill showed that exposure to crude oil can rapidly imbalance populations of marine microbiota, which leads to the proliferation of more resistant organisms. Vibrionales bacteria were up to 48 times higher than background concentrations at the most impacted sites and populations of the dinoflagellate Prorocentrum texanum increased significantly as well. Laboratory microcosm experiments with a natural plankton community showed that P. texanum grew significantly faster under oiled conditions but monocultures of P. texanum did not. Additional laboratory experiments with natural communities from Tampa Bay, Florida showed similar results although a different species dominated, P. minimum. In both cases, tolerance to the presence of crude oil was enhanced by higher sensitivity of grazers led to a release from grazing pressure and allows Prorocentrum species to dominate after an oil spill. The results suggest careful monitoring for Vibrionales and Prorocentrum during future spills would be beneficial given the potential implications to human health.


Assuntos
Bactérias/efeitos dos fármacos , Dinoflagellida/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Poluição por Petróleo , Petróleo/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Cadeia Alimentar , Golfo do México , Plâncton/efeitos dos fármacos , Texas
11.
Mar Pollut Bull ; 121(1-2): 32-44, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28545863

RESUMO

Ongoing bioremediation research seeks to promote naturally occurring microbial polycyclic aromatic hydrocarbon (PAH) degradation during and after oil spill events. However, complex relationships among functionally different microbial groups, nutrients and PAHs remain unconstrained. We conducted a surface water survey and corresponding nutrient amendment bioassays following the Texas City "Y" oil spill in Galveston Bay, Texas. Resident microbial groups, defined as either heterotrophic or autotrophic were enumerated by flow cytometry. Heterotrophic abundance was increased by oil regardless of nutrient concentrations. Contrastingly, autotrophic abundance was inhibited by oil, but this reaction was less severe when nutrient concentrations were higher. Several PAH compounds were reduced in nutrient amended treatments relative to controls suggesting nutrient enhanced microbial PAH processing. These findings provide a first-look at nutrient limitation during microbial oil processing in Galveston Bay, an important step in understanding if nutrient additions would be a useful bioremediation strategy in this and other estuarine systems.


Assuntos
Nitrogênio , Poluição por Petróleo , Fósforo , Plâncton/crescimento & desenvolvimento , Baías , Golfo do México , Hidrocarbonetos Policíclicos Aromáticos , Dinâmica Populacional , Texas
12.
Mar Pollut Bull ; 113(1-2): 483-487, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27609236

RESUMO

Gelatinous zooplankton are known for their capacity to excrete copious amounts of mucus that can be utilized by other organisms. The release of mucus is exacerbated by stressful conditions. Despite the recognized importance of cnidarian mucus to production and material flux in marine ecosystems, the role of gelatinous zooplankton in influencing the fate of oil spills is unknown. In this study we used laboratory experiments to observe the influence of mucus from the moon jellyfish (Aurelia aurita) on the aggregation and degradation of crude oil. The results show that jellyfish swimming in a dispersed solution of oil droplets produced copious amounts of mucus and the mucus aggregates that were shed by the animals contained 26 times more oil than the surrounding water. Incubation experiments showed that hydrocarbon degrading bacteria cell densities more than doubled in the presence of mucus and after 14days, resulted in a significant increase in oil degradation. These results suggest that jellyfish can aggregate dispersed oil droplets and embed them within a matrix that favors hydrocarbon degrading bacteria. While this study lends support to the hypothesis that the presence of gelatinous zooplankton can impact oil spills large scale mesocosm studies will be needed to fully quantify the influence on a natural system.


Assuntos
Poluição por Petróleo , Petróleo/metabolismo , Cifozoários/metabolismo , Zooplâncton/metabolismo , Animais , Bactérias/metabolismo , Muco
13.
Front Microbiol ; 7: 2131, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119669

RESUMO

Understanding bacterial community dynamics as a result of an oil spill is important for predicting the fate of oil released to the environment and developing bioremediation strategies in the Gulf of Mexico. In this study, we aimed to elucidate the roles of temperature, water chemistry (nutrients), and initial bacterial community in selecting oil degraders through a series of incubation experiments. Surface (2 m) and bottom (1537 m) waters, collected near the Deepwater Horizon site, were amended with 200 ppm light Louisiana sweet crude oil and bacterial inoculums from surface or bottom water, and incubated at 4 or 24°C for 50 days. Bacterial community and residual oil were analyzed by pyrosequencing and gas chromatography-mass spectrometry (GC-MS), respectively. The results showed that temperature played a key role in selecting oil-degrading bacteria. Incubation at 4°C favored the development of Cycloclasticus, Pseudoalteromonas, Sulfitobacter, and Reinekea, while 24°C incubations enhanced Oleibacter, Thalassobius, Phaeobacter, and Roseobacter. Water chemistry and the initial community also had potential roles in the development of hydrocarbon-degrading bacterial communities. Pseudoalteromonas, Oleibacter, and Winogradskyella developed well in the nutrient-enriched bottom water, while Reinekea and Thalassobius were favored by low-nutrient surface water. We revealed that the combination of 4°C, crude oil and bottom inoculum was a key factor for the growth of Cycloclasticus, while the combination of surface inoculum and bottom water chemistry was important for the growth of Pseudoalteromonas. Moreover, regardless of the source of inoculum, bottom water at 24°C was a favorable condition for Oleibacter. Redundancy analysis further showed that temperature and initial community explained 57 and 19% of the variation observed, while oil and water chemistry contributed 14 and 10%, respectively. Overall, this study revealed the relative roles of temperature, water chemistry, and initial bacterial community in selecting oil degraders and regulating their evolution in the northern Gulf of Mexico.

14.
Front Microbiol ; 6: 1325, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26648916

RESUMO

Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.

15.
Mar Pollut Bull ; 95(1): 265-72, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25899525

RESUMO

We determined the contributions of photooxidation and biodegradation to the weathering of Light Louisiana Sweet crude oil by incubating surface water from the Deepwater Horizon site under natural sunlight and temperature conditions. N-alkane biodegradation rate constants were ca. ten-fold higher than the photooxidation rate constants. For the 2-3 ring and 4-5 ring polycyclic aromatic hydrocarbons (PAHs), photooxidation rate constants were 0.08-0.98day(-1) and 0.01-0.07day(-1), respectively. The dispersant Corexit enhanced degradation of n-alkanes but not of PAHs. Compared to biodegradation, photooxidation increased transformation of 4-5 ring PAHs by 70% and 3-4 ring alkylated PAHs by 36%. For the first time we observed that sunlight inhibited biodegradation of pristane and phytane, possibly due to inhibition of the bacteria that can degrade branched-alkanes. This study provides quantitative measures of oil degradation under relevant field conditions crucial for understanding and modeling the fate of spilled oil in the northern Gulf of Mexico.


Assuntos
Alcanos/metabolismo , Biodegradação Ambiental , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/química , Alcanos/efeitos da radiação , Golfo do México , Luz , Oxirredução , Petróleo/efeitos da radiação , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/efeitos da radiação , Água do Mar , Temperatura
16.
Artigo em Inglês | MEDLINE | ID: mdl-23485232

RESUMO

Mangroves constitute valuable coastal resources that are vulnerable to oil pollution. One of the major processes to remove oil from contaminated mangrove sediment is microbial degradation. A study on heavy oil- and hydrocarbon-degrading bacterial consortia from mangrove sediments in Okinawa, Japan was performed to evaluate their capacity to biodegrade and their microbial community composition. Surface sediment samples were obtained from mangrove sites in Okinawa (Teima, Oura, and Okukubi) and enriched with heavy oil as the sole carbon and energy source. The results revealed that all enriched microbial consortia degraded more than 20% of heavy oil in 21 days. The K1 consortium from Okukubi site showed the most extensive degradative capacity after 7 and 21 days. All consortia degraded more than 50% of hexadecane but had little ability to degrade polycyclic aromatic hydrocarbons (PAHs). The consortia were dominated by Pseudomonas or Burkholderia. When incubated in the presence of hydrocarbon compounds, the active bacterial community shifted to favor the dominance of Pseudomonas. The K1 consortium was a superior degrader, demonstrating the highest ability to degrade aliphatic and aromatic hydrocarbon compounds; it was even able to degrade heavy oil at a concentration of 15%(w/v). The dominance and turn-over of Pseudomonas and Burkholderia in the consortia suggest an important ecological role for and relationship between these two genera in the mangrove sediments of Okinawa.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Consórcios Microbianos/fisiologia , Petróleo/metabolismo , Burkholderia/metabolismo , Eletroforese em Gel de Gradiente Desnaturante , Hidrocarbonetos/metabolismo , Japão , Consórcios Microbianos/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pseudomonas/metabolismo , RNA Ribossômico 16S , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA